Assertion : A deuteron and an $\alpha -$ particle are placed in an electric field. If $F_1$ and $F_2$ be the forces acting on them and $a_1$ and $a_2$ be their accelerations respectively then, $a_1 = a_2$.
Reason : Forces will be same in electric field
If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
If Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
Two charges each of magnitude $Q$ are fixed at $2a$ distance apart. A third charge ($-q$ of mass $'m'$) is placed at the mid point of the two charges; now $-q$ charge is slightly displaced perpendicular to the line joining the charges then find its time period
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
Force between $A$ and $B$ is $F$. If $75\%$ charge of $A$ is transferred to $B$ then force between $A$ and $B$ is
Two point charges $ + 9e$ and $ + e$ are at $16\, cm$ away from each other. Where should another charge $q$ be placed between them so that the system remains in equilibrium