An observer moves with a constant speed along the line joining two stationary objects. He will observe that the two objects
have the same speed
have the same velocity
move in the same direction
All of the above
$Assertion$ : If a body is thrown upwards, the distance covered by it in the last second of upward motion is about $5\, m$ irrespective of its initial speed
$Reason$ : The distance covered in the last second of upward motion is equal to that covered in the first second of downward motion when the particle is dropped.
A particle starts from origin at $t=0$ with a velocity $5.0 \hat{ i }\; m / s$ and moves in $x-y$ plane under action of a force which produces a constant acceleration of $(3.0 \hat{ i }+2.0 \hat{ j })\; m / s ^{2} .$
$(a)$ What is the $y$ -coordinate of the particle at the instant its $x$ -coordinate is $84 \;m$ ?
$(b)$ What is the speed of the particle at this time?
A balloon is moving up in air vertically above a point $A$ on the ground. When it is at a height $h _{1},$ a girl standing at a distance $d$ (point $B$ ) from $A$ (see figure) sees it at an angle $45^{\circ}$ with respect to the vertical. When the balloon climbs up a further height $h _{2},$ it is seen at an angle $60^{\circ}$ with respect to the vertical if the girl moves further by a distance $2.464\, d$ (point $C$ ). Then the height $h _{2}$ is (given tan $\left.30^{\circ}=0.5774\right)$$.......$
A particle moves in east direction with $15 \,m/sec$. for $2\, sec$ then moves northward with $5\, m/sec$. for $8 \,sec$. then average velocity of the particle is