An isolated solid metallic sphere is given $ + Q$ charge. The charge will be distributed on the sphere
Uniformly but only on surface
Only on surface but non-uniformly
Uniformly inside the volume
Non-uniformly inside the volume
A particle of charge $-q$ and mass $m$ moves in a circle of radius $r$ around an infinitely long line charge of linear density $+\lambda$. Then time period will be given as
(Consider $k$ as Coulomb's constant)
Suppose the charge of a proton and an electron differ slightly. One of them is $-e,$ the other is $(e + \Delta e).$ If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distanced (much greater than atomic size) apart is zero, then $\Delta e$ is of the order of $[$ Given: mass of hydrogen $m_h = 1.67 \times 10^{- 27}\,\, kg]$
Charges $4Q$, $q$ and $Q$ and placed along $x$-axis at positions $x = 0,x = l/2$ and $x = l$, respectively. Find the value of $q$ so that force on charge $Q$ is zero
Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. the charge on each is $6.5 \times 10^{-7}\; C?$ Suppose the spheres $A$ and $B$ have identical sizes.A third sphere of the same size but uncharged is brought in contact with the first, then brought in contact with the second, and finally removed from both. What is the new force of repulsion between $A$ and $B?$
A charge $q$ is placed in the middle of a line joining the two equal and like point charge $Q$. This charge $q$ will remain in equilibrium for which value of $q$ is