An infinite number of charges each equal to $0.2\,\mu C$ are arranged in a line at distances $1\,m, 2\,m, 4\,m, 8\,m......$ from a fixed point. The potential at fixed point is ......$kV$
$1.80$
$2$
$3.60$
$2.25$
Concentric metallic hollow spheres of radii $R$ and $4 R$ hold charges $Q _{1}$ and $Q _{2}$ respectively. Given that surface charge densities of the concentric spheres are equal, the potential difference $V ( R )- V (4 R )$ is
$27$ identical drops are charged at $22\, V\,\,each.$ They combine to form a bigger drop. The potential of the bigger drop will be............ $V.$
The electric potential $V(x, y, z)$ for a planar charge distribution is given by:
$V\left( {x,y,z} \right) = \left\{ {\begin{array}{*{20}{c}}
{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, < \, - d}\\
{ - {V_0}{{\left( {1 + \frac{x}{d}} \right)}^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\, - \,d\, \le x < 0}\\
{ - {V_0}\left( {1 + 2\frac{x}{d}} \right)\,\,\,\,\,\,\,\,\,\,\,for\,0\, \le x < d}\\
{ - 3{V_0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, > \,d}
\end{array}} \right.$
where $-V_0$ is the potential at the origin and $d$ is a distance. Graph of electric field as a function of position is given as
Six point charges are placed at the vertices of a regular hexagon of side $a$ as shown. If $E$ represents electric field and $V$ represents electric potential at $O$, then
Electric potential at a point $P$ due to a point charge of $5 \times 10^{-9}\; C$ is $50 \;V$. The distance of $P$ from the point charge is ......... $cm$
(Assume, $\frac{1}{4 \pi \varepsilon_0}=9 \times 10^{+9}\; Nm ^2 C ^{-2}$)