An equilateral triangle $ABC$ is formed by two copper rods $AB$ and $BC$ and one is aluminium rod which heated in such a way that temperature of each rod increases by $\Delta T$. Find change in the angle $\angle {ABC}$. (Coefficient of linear expansion for copper is $\alpha _1$ and for aluminium is $\alpha _2$).
Suppose, $\mathrm{AB}=l_{1}, \mathrm{AC}=l_{2}$ and $\mathrm{BC}=l_{3}$
$\therefore \cos \theta=\frac{l_{3}^{2}+l_{1}^{2}-l_{2}^{2}}{2 l_{3} l_{1}}$ where $\angle \mathrm{ABC}=\theta$ $\therefore 2 l_{3} l_{1} \cos \theta=l_{3}^{2}+l_{1}^{2}-l_{2}^{2}$
Integrating on both side,
$2\left(l_{3} d l_{1}+l_{1} d l_{3}\right) \cos \theta-2 l 3 l_{1} \sin \theta d \theta=2 l_{3} d l_{3}+2 l_{1} d l_{1}-2 l_{2} d l_{2}$
Dividing by $2$ ,
$\left(l_{3} d l_{1}+l_{1} \times d l_{3}\right) \cos \theta-l_{3} l_{1} \sin \theta d \theta=l_{3} d l_{3}+l_{1} d l_{1}-l_{2} d l_{2}$
Now $d l_{1}=l_{1} \alpha_{1} \Delta \mathrm{T}, d l_{2}=l_{2} \alpha_{2} \Delta \mathrm{T}, d l_{3}=l_{3} \alpha_{3} \Delta \mathrm{T}$ then,
$\left(l_{3} \times l_{1} \alpha_{1} \Delta \mathrm{T}+l_{1} \times l_{3} \alpha_{3} \Delta \mathrm{T}\right) \cos \theta-l_{3} l_{1} \sin \theta d \theta=l_{3} \times l_{3} \alpha_{3} \Delta \mathrm{T}+l_{1} \times l_{1} \alpha_{1} \Delta \mathrm{T}-l_{2} \times l_{2} \alpha_{2} \Delta \mathrm{T}$
Now let $l_{1}=l_{2}=l_{3}=l$ and $\alpha_{3}=\alpha_{1}$
$\therefore\left(l^{2} \alpha_{1} \Delta \mathrm{T}+l^{2} \alpha_{1} \Delta \mathrm{T}\right) \cos \theta-l^{2} \sin \theta d \theta=l^{2} \alpha_{1} \Delta \mathrm{T}+l^{2} \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$
$\quad \cos \theta=\cos 60^{\circ}=\frac{1}{2} \quad(\mathrm{Equilateral}$ triangle $)$
$\therefore 2 l^{2} \alpha_{1} \Delta \mathrm{T} \times \frac{1}{2}-l^{2} \sin \theta d \theta=2 l \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$
$\therefore l \alpha_{1} \Delta \mathrm{T}-l^{2} \sin \theta d \theta=2 l^{2} \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$
Young's modules of material of a wire of length ' $L$ ' and cross-sectional area $A$ is $Y$. If the length of the wire is doubled and cross-sectional area is halved then Young's $modules$ will be :
A wire of length $2\, m$ is made from $10\;c{m^3}$ of copper. A force $F$ is applied so that its length increases by $2\, mm.$ Another wire of length 8 m is made from the same volume of copper. If the force $F$ is applied to it, its length will increase by......... $cm$
A force is applied to a steel wire ' $A$ ', rigidly clamped at one end. As a result elongation in the wire is $0.2\,mm$. If same force is applied to another steel wire ' $B$ ' of double the length and a diameter $2.4$ times that of the wire ' $A$ ', the elongation in the wire ' $B$ ' will be $............\times 10^{-2}\,mm$ (wires having uniform circular cross sections)
A steel rod of length $1\,m$ and area of cross section $1\,cm^2$ is heated from $0\,^oC$ to $200\,^oC$ without being allowed to extend or bend. Find the tension produced in the rod $(Y = 2.0 \times 10^{11}\,Nm^{-2}$, $\alpha = 10^{-5} C^{-1})$
The Young's modulus of a wire of length $L$ and radius $r$ is $Y$ $N/m^2$. If the length and radius are reduced to $L/2$ and $r/2,$ then its Young's modulus will be