An electron falls through a distance of $1.5\, cm$ in a uniform electric field of magnitude $2.0\times10^4\, N/C$ as shown in the figure. The time taken by electron to fall through this distance is ($m_e = 9.1\times10^{-31}\,kg$, Neglect gravity)

829-139

  • A

    $1\times10^{-9}\,s$

  • B

    $2.9\times10^{-9}\,s$

  • C

    $2.9\times10^{-8}\,s$

  • D

    $1\times10^{-8}\,s$

Similar Questions

Three particles are projected in a uniform electric field with same velocity perpendicular to the field as shown. Which particle has highest charge to mass ratio?

Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z-$ axis. If a $ -ve$ point charge is placed at a distance $z$ away from centre along axis $(z << L )$ then

An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to

  • [AIIMS 2015]

An electron moving with the speed $5 \times {10^6}$ per sec is shooted parallel to the electric field of intensity $1 \times {10^3}\,N/C$. Field is responsible for the retardation of motion of electron. Now evaluate the distance travelled by the electron before coming to rest for an instant (mass of $e = 9 \times {10^{ - 31}}\,Kg.$ charge $ = 1.6 \times {10^{ - 19}}\,C)$

An electron enters a parallel plate capacitor with horizontal speed $u$ and is found to deflect by angle $\theta$ on leaving the capacitor as shown below. It is found that $\tan \theta=0.4$ and gravity is negligible. If the initial horizontal speed is doubled, then the value of $\tan \theta$ will be

  • [KVPY 2014]