An electron enters in high potential region ${V_2}$ from lower potential region ${V_1}$ then its velocity
Will increase
Will change in direction but not in magnitude
No change in direction of field
No change in direction perpendicular to field
Charges $+q$ and $-q$ are placed at points $A$ and $B$ respectively which are a distance $2\,L$ apart, $C$ is the midpoint between $A$ and $B.$ The work done in moving a charge $+Q$ along the semicircle $CRD$ is
Three charges $Q, +q$ and $+q$ are placed at the vertices of a right -angle isosceles triangle as shown below. The net electrostatic energy of the configuration is zero, if the value of $Q$ is
A charge $( - q)$ and another charge $( + Q)$ are kept at two points $A$ and $B$ respectively. Keeping the charge $( + Q)$ fixed at $B$, the charge $( - q)$ at $A$ is moved to another point $C$ such that $ABC$ forms an equilateral triangle of side $l$. The net work done in moving the charge $( - q)$ is
A point charge $q$ is held at the centre of a circle of radius $r . B, C$ are two points on the circumference of the circle and $A$ is a point outside the circle. If $W_{A B}$ represents work done by electric field in taking a charge $q_0$ from $A$ to $B$ and $W_{A C}$ represents the workdone from $A$ to $C$, then
A ball of mass $1\, g$ and charge ${10^{ - 8}}\,C$ moves from a point $A$. where potential is $600\, volt$ to the point $B$ where potential is zero. Velocity of the ball at the point $B$ is $20\, cm/s$. The velocity of the ball at the point $A$ will be