An electric dipole of dipole moment $\vec P$ is lying along a uniform electric field $\vec E$ . The work done in rotating the dipole by $90^o$ is
$2pE$
$pE$
$\sqrt 2\, pE$
$\frac{{pE}}{2}$
The amount of heat liberated in the circuit after closing the switch $S$ .
A charged particle with charge $q$ and mass $m$ starts with an initial kinetic energy $K$ at the centre of a uniformly charged spherical region of total charge $Q$ and radius $R$. Charges $q$ and $Q$ have opposite signs. The spherically charged region is not free to move and kinetic energy $K$ is just sufficient for the charge particle to reach boundary of the spherical charge. How much time does it take the particle to reach the boundary of the region?
If $\vec E = \frac{{{E_0}x}}{a}\hat i\,\left( {x - mt} \right)$ then flux through the shaded area of a cube is
Five balls numbered $1$ to $5$ are suspended using separate threads. Pairs $(1,2), (2,4)$ and $(4,1)$ show electrostatic attraction while pairs $(2,3)$ and $(4,5)$ show repulsion. Therefore ball $1$ must be
Which of the following is a volt :