An earthen pitcher used in summer cools water in it essentially by evaporation of water from its porous surface. If a pitcher carries $4 \,kg$ of water and the rate of evaporation is $20$ g per hour, temperature of water in it decreases by $\Delta T$ in two hours. The value of $\Delta T$ is close to ........... $^{\circ} C$ (ratio of latent of evaporation to specific heat of water is $540^{\circ} C$
$2.7$
$4.2$
$5.4$
$10.8$
Water of volume $2\, L$ in a closed container is heated with a coil of $1\,kW$. While water is heated, the container loses energy at a rate of $160\, J/s$ . In how much time will the temperature of water rise from $27\,^oC$ to $77\,^oC$ ? (Specific heat of water is $4.2\, kJ/kg$ and that of the container is negligible)
The specific heat of a metal at low temperatures varies according to $S = aT^3$ where a is a constant and $T$ is the absolute temperature. The heat energy needed to raise unit mass of the metal from $T = 1 K$ to $T = 2 K$ is
A mass of $50\,g$ of water in a closed vessel, with surroundings at a constant temperature takes $2\, minutes$ to cool from $30\,^oC$ to $25\,^oC$. A mass of $100\,g$ of another liquid in an identical vessel with identical surroundings takes the same time to cool from $30\,^oC$ to $25\,^o C$. The specific heat of the liquid is .......... $kcal/kg$ (The water equivalent of the vessel is $30\,g$.)
A vessel contains $110\, g$ of water. The heat capacity of the vessel is equal to $10\, g$ of water. The initial temperature of water in vessel is $10°C.$ If $220\, g$ of hot water at $70°C$ is poured in the vessel, the final temperature neglecting radiation loss, will be........ $^oC$
A heater supplying constant power $P$ watts is switched $ON$ at time $t=0 \,min$ to raise the temperature of a liquid kept in a calorimeter of negligible heat capacity. A student records the temperature of the liquid $T(t)$ at equal time intervals. A graph is plotted with $T(t)$ on the $Y$-axis versus $t$ on the $X$-axis. Assume that there is no heat loss to the surroundings during heating. Then,