An assembly of identical spring-mass systems is placed on a smooth horizontal surface as shown. Initially the springs are relaxed. The left mass is displaced to the left while the right mass is displaced to the right and released. The resulting collision is elastic. The time period of the oscillations of the system is :-

817-287

  • A

    $2\pi \sqrt {\frac{{2M}}{k}} $

  • B

    $2\pi \sqrt {\frac{M}{{2k}}} $

  • C

    $2\pi \sqrt {\frac{M}{k}} $

  • D

    $\pi \sqrt {\frac{M}{k}} $

Similar Questions

Two bodies $M$ and $N $ of equal masses are suspended from two separate massless springs of force constants $k_1$ and $k_2$ respectively. If the two bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude $M$ to that of $N$ is

  • [IIT 1988]

Aheavy brass sphere is hung from a light spring and is set in vertical small oscillation with a period $T.$ The sphere is now immersed in a non-viscous liquid with a density $1/10\,th$ the density of the sphere. If the system is now set in vertical $S.H.M.,$ its period will be

The force constants of two springs are ${K_1}$ and ${K_2}$. Both are stretched till their elastic energies are equal. If the stretching forces are ${F_1}$ and ${F_2}$, then ${F_1}:{F_2}$ is

In arrangement given in figure, if the block of mass m is displaced, the frequency is given by

The force-deformation equation for a nonlinear spring fixed at one end is $F =4x^{1/ 2}$  , where $F$ is the force (expressed in newtons) applied at the other end and $x$ is the deformation expressed in meters