An $\alpha -$ particle of $1\,MeV$ energy moves on circular path in uniform magnetic field. Then kinetic energy of proton in same magnetic field for circular path of double radius is......$MeV$
$1$
$4$
$2$
None
A beam of ions with velocity $2 \times {10^5}\,m/s$ enters normally into a uniform magnetic field of $4 \times {10^{ - 2}}\,tesla$. If the specific charge of the ion is $5 \times {10^7}\,C/kg$, then the radius of the circular path described will be.......$m$
A homogeneous electric field $E$ and a uniform magnetic field $\mathop B\limits^ \to $ are pointing in the same direction. A proton is projected with its velocity parallel to $\mathop E\limits^ \to $. It will
A uniform magnetic field acts at right angles to the direction of motion of electrons. As a result, the electron moves in a circular path of radius $2\, cm$. If the speed of the electrons is doubled, then the radius of the circular path will be.....$cm$
The radius of curvature of the path of a charged particle moving in a static uniform magnetic field is
If the direction of the initial velocity of the charged particle is neither along nor perpendicular to that of the magnetic field, then the orbit will be