A uniform rope of mass $6\,kg$ hangs vertically from a rigid support. A block of mass $2\,kg$ is attached to the free end of the rope. A transverse pulse of wavelength $0.06\,m$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top is (in $m$ )

  • A

    $0.06$

  • B

    $0.12$

  • C

    $0.03$

  • D

    $0.24$

Similar Questions

A transverse wave propagating on the string can be described by the equation $y=2 \sin (10 x+300 t)$. where $x$ and $y$ are in metres and $t$ in second. If the vibrating string has linear density of $0.6 \times 10^{-3} \,g / cm$, then the tension in the string is .............. $N$

A uniform rope of length $L$ and mass $m_1$ hangs vertically from a rigid support. A block of mass $m_2$ is attached to the free end of the rope. A transverse pulse of wavelength $\lambda _1$, is produced at the lower end of the rope. The wave length of the pulse when it reaches the top of the rope is $\lambda _2$. The ratio $\lambda _2\,/\,\lambda _1$ is 

  • [NEET 2016]

A rope of length $L$ and mass $M$ hangs freely from the ceiling. If the time taken by a transverse wave to travel from the bottom to the top of the rope is $T$, then time to cover first half length is

A steel wire with mass per unit length $7.0 \times 10^{-3}\,kg\,m ^{-1}$ is under tension of $70\,N$. The speed of transverse waves in the wire will be $.........m/s$

  • [JEE MAIN 2023]

Which of the following statements is incorrect during propagation of a plane progressive mechanical wave ?