A uniform chain of $6\, m$ length is placed on a table such that a part of its length is hanging over the edge of the table. The system is at rest. The co-efficient of static friction between the chain and the surface of the table is $0.5$, the maximum length of the chain hanging from the table is.......$m.$
$25$
$12$
$9$
$2$
Abody is placed on a rough inclined plane of inclination $\theta$ .As the angle $\theta$ is increased from $0^o$ to $90^o$ the contact force between the block and the plane
Pulling force making an angle $\theta $ to the horizontal is applied on a block of weight $W$ placed on a horizontal table. If the angle of friction is $\alpha $, then the magnitude of force required to move the body is equal to
A rectangular box lies on a rough inclined surface. The coefficient of friction between the surface and the box is $\mu $. Let the mass of the box be $m$.
$(a)$ At what angle of inclination $\theta $ of the plane to the horizontal will the box just start to slide down the plane ?
$(b)$ What is the force acting on the box down the plane, if the angle of inclination of the plane is increased to $\alpha > \theta $ ?
$(c)$ What is the force needed to be applied upwards along the plane to make the box either remain stationary or just move up with uniform speed ?
$d)$ What is the force needed to be applied upwards along the plane to make the box move up the plane with acceleration $a$ ?
If mass of $A = 10\,\,kg$, coefficient of static friction $= 0.2$, coefficient of kinetic friction = $0.2$. Then mass of $B$ to start motion is
Someone is using a scissors to cut a wire of circular cross section and negligible weight. The wire slides in the direction away from the hinge until the angle between the scissors blades becomes $2 \alpha$. The friction coefficient between the blades and the wire, is :-