A train is moving towards a stationary observer (at $t = 0$) with constant velocity of $20\ m/s$ and after sometime it crosses the observer. Which of the following curve best represents the frequency received by observer $f$ as a function of time ?
Beats are produced by two waves $y_1 = a\, sin\, (1000\, \pi t)$ and $y^2 = a\, sin\, (998\, \pi t)$ The number of beats heard per second is
The apparent frequency of a sound wave as heard by an observer is $10\%$ more than the actual frequency. If the velocity of sound in air is $330\, m/sec$, then
$(i)$ The source may be moving towards the observer with a velocity of $30\,ms^{-1}$
$(ii)$ The source may be moving towards the observer with a velocity of $33\,ms^{-1}$
$(iii)$ The observer may be moving towards the source with a velocity of $30\,ms^{-1}$
$(iv)$ The observer may be moving towards the source with a velocity of $33\,ms^{-1}$
Three waves of equal frequency having amplitudes $10\,\mu m$, $4\,\mu m$, $7\,\mu m$ arrive at a given point with successive phase difference of $\pi /2$, the amplitude the resulting wave in $\mu m$ is given by
A whistle revolves in a circle with an angular speed of $20\, rad/s$ using a string of length $50\, cm$. If the frequency of sound from the whistle is $385\, Hz$, then what is the minimum frequency heard by an observer, which is far away from the centre in the same plane ..... $Hz$ (speed of sound is $340\, m/s$)
The equation of displacement of two waves are given as ${y_1} = 10\,\sin \,\left( {3\pi t\, + \,\pi /3\,} \right)$ , ${y_2} = 5\,\left( {\sin \,3\pi t + \,\sqrt 3 \,\cos \,3\pi t} \right)$ , then what is the ratio of their amplitude