A thin disc of radius $b = 2a$ has a concentric hole of radius $'a'$ in it (see figure). It carries uniform surface charge $'\sigma '$ on it. If the electric field on its axis at height $'h'$ $(h << a)$ from its centre is given as $'Ch'$ then value of $'C'$ is
$\frac{\sigma }{{4a{ \in _0}}}$
$\frac{\sigma }{{8a{ \in _0}}}$
$\frac{\sigma }{{a{ \in _0}}}$
$\frac{\sigma }{{2a{ \in _0}}}$
$ABC$ is an equilateral triangle. Charges $ + \,q$ are placed at each corner. The electric intensity at $O$ will be
Four point charges $-q, +q, +q$ and $-q$ are placed on $y$ axis at $y = -2d$, $y = -d, y = +d$ and $y = +2d$, respectively. The magnitude of the electric field $E$ at a point on the $x -$ axis at $x = D$, with $D > > d$, will vary as
Charges $q$, $2q$, $3q$ and $4q$ are placed at the corners $A$,$ B$,$ C$ and $D$ of a square as shown in the following figure. The direction of electric field at the centre of the square is along
A wire of length $L\, (=20\, cm)$, is bent into a semicircular arc. If the two equal halves of the arc were each to be uniformly charged with charges $ \pm Q\,,\,\left[ {\left| Q \right| = {{10}^3}{\varepsilon _0}} \right]$ Coulomb where $\varepsilon _0$ is the permittivity (in $SI\, units$) of free space] the net electric field at the centre $O$ of the semicircular arc would be
Give reason : ''Small and light pieces of paper are attracted by comb run through dry hair.''