A square loop of edge length $2 \mathrm{~m}$ carrying current of $2 \mathrm{~A}$ is placed with its edges parallel to the $\mathrm{x}-\mathrm{y}$ axis. A magnetic field is passing through the $x-y$ plane and expressed as $\vec{B}=B_0(1+4 x) \hat{k}$, where $\mathrm{B}_0=5 \mathrm{~T}$. The net magnetic force experienced by the loop is. . . . . . . $\mathrm{N}$.
$159$
$160$
$170$
$171$
A rectangular loop of wire shown below is coplanar with a long wire carrying current $I$. The loop is pulled to the right a s indicated. What are the directions of the induced current in the loop and the magnetic forces on the left and the right sides of the loop?
Induced current | Force on left side | Force on right side | |
$a.$ | Counter clockwise | To the left | To the right |
$b.$ | clockwise | To the left | To the right |
$c.$ | Counter clockwise | To the right | To the left |
$d.$ | clockwise | To the right | To the left |
Two thin long parallel wires separated by a distance $b$ are carrying a current $i$ $amp$ each. The magnitude of the force per unit length exerted by one wire on the other is
A rectangular loop of wire, supporting a mass $m$, hangs with one end in a uniform magnetic field $\vec B$ pointing into the plane of the paper. $A$ clockwise current is set up such that $i> mg/Ba,$ where $a$ is the width of the loop. Then
A conducting wire bent in the form of a parabola $y^2 = 2x$ carries a current $i = 2 A$ as shown in figure. This wire is placed in a uniform magnetic field $\vec B = - 4\,\hat k$ $Tesla$. The magnetic force on the wire is (in newton)
A wire carrying a current $I$ along the positive $x$-axis has length $L$ It is kept in a magnetic field $\overrightarrow{ B }=(2 \hat{ i }+3 \hat{ j }-4 \hat{ k }) T$. The magnitude of the magnetic force acting on the wire is $..........IL$