A sphere of mass $m$ travelling at constant speed $v$ strike another sphere of same mass. If  coefficient of restitution is $e$, then ratio of velocity of both spheres just after collision is :-

  • A

    $\frac{1-e}{1+e}$

  • B

    $\frac{1+e}{1-e}$

  • C

    $\frac{e+1}{e-1}$

  • D

    $\frac{e-1}{e+1}$

Similar Questions

The variation of force $F$ acting on a body moving along $x$-axis varies with its position $(x)$ as shown in figure The body is in stable equilibrium state at

A $300\ kg$ crate is dropped vertically onto a conveyor belt that is moving at $1.20\ m/s$ . A motor maintains the belt's constant speed. The belt initially slides under the crate, with a coefficient of friction of $0.400$ . After a short time, the crate is moving at the speed of the belt. During the period in which the crate is being accelerated, find the work done by the motor which drives the belt ................... $\mathrm{J}$

A ball is dropped from height $h$ on a plane. If the coefficient of restitution of the plane is $e$ and if ball hits ground two times, the height upto which it reaches after two jumps, will be

How much work does a pulling force of $40\, N$ do on the $20\, kg$ box in pulling it $8\, m$ across the smooth floor at a constant speed. The pulling force is directed at $60^o$ above the horizontal .............. $\mathrm{J}$

A ball moving with velocity $2\, m/s$ collides head on with another stationary ball of double the mass. If the coefficient of restitution is $0.5$, then their velocities (in $m/s$) after collision will be