A pulse is generated at lower end of a hanging rope of uniform density and length $L$. The speed of the pulse when it reaches the mid point of rope is ......
$\sqrt{2 g L}$
$\sqrt{g L}$
$\sqrt{\frac{g L}{2}}$
$\frac{\sqrt{g L}}{2}$
A steel wire has a length of $12$ $m$ and a mass of $2.10$ $kg$. What will be the speed of a transverse wave on this wire when a tension of $2.06{\rm{ }} \times {10^4}$ $\mathrm{N}$ is applied ?
A string of mass $2.50 \;kg$ is under a tension of $200\; N$. The length of the stretched string is $20.0 \;m$. If the transverse jerk is struck at one end of the string, how long (in $sec$) does the disturbance take to reach the other end?
A transverse wave propagating on the string can be described by the equation $y=2 \sin (10 x+300 t)$. where $x$ and $y$ are in metres and $t$ in second. If the vibrating string has linear density of $0.6 \times 10^{-3} \,g / cm$, then the tension in the string is .............. $N$
The mass per unit length of a uniform wire is $0.135\, g / cm$. A transverse wave of the form $y =-0.21 \sin ( x +30 t )$ is produced in it, where $x$ is in meter and $t$ is in second. Then, the expected value of tension in the wire is $x \times 10^{-2} N$. Value of $x$ is . (Round-off to the nearest integer)
Mechanical waves on the surface of a liquid are