A proton (mass $m$ and charge $+e$) and an $\alpha -$ particle (mass $4m$ and charge $+2e$) are projected with the same kinetic energy at right angles to the uniform magnetic field. Which one of the following statements will be true
The $\alpha -$ particle will be bent in a circular path with a small radius that for the proton
The radius of the path of the $\alpha -$ particle will be greater than that of the proton
The $\alpha -$ particle and the proton will be bent in a circular path with the same radius
The $\alpha -$ particle and the proton will go through the field in a straight line
A deuteron and an alpha particle having equal kinetic energy enter perpendicular into a magnetic field. Let $r_{d}$ and $r_{\alpha}$ be their respective radii of circular path. The value of $\frac{r_{d}}{r_{\alpha}}$ is equal to
Two toroids $1$ and $2$ have total number of tums $200$ and $100 $ respectively with average radii $40\; \mathrm{cm}$ and $20 \;\mathrm{cm}$ respectively. If they carry same current $i,$ the ratio of the magnetic flelds along the two loops is
A charged particle of specific charge $\alpha$ is released from origin at time $t = 0$ with velocity $\vec V = {V_o}\hat i + {V_o}\hat j$ in magnetic field $\vec B = {B_o}\hat i$ . The coordinates of the particle at time $t = \frac{\pi }{{{B_o}\alpha }}$ are (specific charge $\alpha = \,q/m$)
A proton of velocity $\left( {3\hat i + 2\hat j} \right)\,ms^{-1}$ enters a magnetic field of $(2\hat j + 3\hat k)\, tesla$. The acceleration produced in the proton is (charge to mass ratio of proton $= 0.96 \times10^8\,Ckg^{-1}$)
A proton and an alpha particle both enter a region of uniform magnetic field $B,$ moving at right angles to the field $B.$ If the radius of circular orbits for both the particles is equal and the kinetic energy acquired by proton is $1\,\, MeV,$ the energy acquired by the alpha particle will be......$MeV$