A projectile is projected with velocity $k{v_e}$ in vertically upward direction from the ground into the space. ($v_e$ is escape velocity and $k < 1$). If air resistance is considered to be negligible then the maximum height from the centre of earth to whichit can go, will be : ($R =$ radius of earth)

  • A

    $\frac{R}{{{k^2} + 1}}$

  • B

    $\frac{R}{{{k^2} - 1}}$

  • C

    $\frac{R}{{1 - {k^2}}}$

  • D

    $\frac{R}{{k + 1}}$

Similar Questions

A clock $S$ is based on oscillation of a spring and a clock $P$ is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having the same density as earth but twice the radius

A body of mass $m$ is lifted up from the surface of the earth to a height three times the radius of the earth. The change in potential energy of the body is

where $g$ is acceleration due to gravity at the surface of earth.

The orbit of geostationary satellite is circular, the time period of satellite depends on $(i)$ mass of the satellite $(ii)$ mass of the earth $(iii)$ radius of the orbit $(iv)$ height of the satellite from the surface of the earth

Assume that a tunnel is dug through earth from North pole to south pole and that the earth is a non-rotating, uniform sphere of density $\rho $. The gravitational force on a particle of mass $m$ dropped into the tunnel when it reaches a distance $r$ from the centre of earth is

If $M$ is mass of a planet and $R$ is its radius then in order to become black hole [ $c$ is speed of light]