A projectile is projected with velocity $k{v_e}$ in vertically upward direction from the ground into the space. ($v_e$ is escape velocity and $k < 1$). If air resistance is considered to be negligible then the maximum height from the centre of earth to whichit can go, will be : ($R =$ radius of earth)

  • A

    $\frac{R}{{{k^2} + 1}}$

  • B

    $\frac{R}{{{k^2} - 1}}$

  • C

    $\frac{R}{{1 - {k^2}}}$

  • D

    $\frac{R}{{k + 1}}$

Similar Questions

A clock $S$ is based on oscillation of a spring and a clock $P$ is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having the same density as earth but twice the radius

A skylab of mass $m\,kg$ is first launched from the surface of the earth in a circular orbit of radius $2R$ (from the centre of the earth) and then it is shifted from this circular orbit to another circular orbit of radius $3R$ . The minimum energy required to shift the lab from first orbit to the second orbit are

Two identical spheres are placed in contact with each other. The force of gravitation between the spheres will be proportional to ($R =$ radius of each sphere)

Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre of the planet for $r\geq $ radius of the planet. Plots $1$ and $2$ coincide for $r\geq R_2$ and plots $3$ and $4$ coincide for $r \geq  R_4$. The sequence of the planets in the descending order of their densities is 

If the change in the value of ' $g$ ' at a height ' $h$ ' above the surface of the earth is same as at a depth $x$ below it, then ( $x$ and $h$ being much smaller than the radius of the earth)