A projectile is projected with velocity $k{v_e}$ in vertically upward direction from the ground into the space. ($v_e$ is escape velocity and $k < 1$). If air resistance is considered to be negligible then the maximum height from the centre of earth to whichit can go, will be : ($R =$ radius of earth)
$\frac{R}{{{k^2} + 1}}$
$\frac{R}{{{k^2} - 1}}$
$\frac{R}{{1 - {k^2}}}$
$\frac{R}{{k + 1}}$
Asatellite is launched into a circular orbit of radius $R$ around the earth. A second satellite is launched into an orbit of radius $1.02\,R.$ The period of second satellite is larger than the first one by approximately ........ $\%$
Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$. The space around the masses is now filled with a liquid of specific gravity $3$. The gravitationalforce will now be
A particle is kept at rest at a distance $'R'$ from the surface of earth (of radius $R$). The minimum speed with which it should be projected so that it does not return is
The distance of neptune and saturn from the sun is nearly $10^{13}$ and $10^{12}$ meter respectively. Assuming that they move in circular orbits, their periodic times will be in the ratio
$Assertion$ : The escape speed does not depend on the direction in which the projectile is fired.
$Reason$ : Attaining the escape speed is easier if a projectile is fired in the direction the launch site is moving as the earth rotates about its axis.