A point moves in $x -y$ plane according to the law $x = 3\, cos\,4t$ and $y = 3\, (1 -sin\,4t)$. The distance travelled by the particle in $2\, sec$ is...........$m$  (where $x$ and $y$ are in $metres$ )

  • A

    $48$

  • B

    $24$

  • C

    $48\,\sqrt 2 $

  • D

    $24\,\sqrt 2$

Similar Questions

The height $y$ and the distance $x$ along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) are given by $y = (8t - 5{t^2})$ meter and $x = 6t\, meter$, where $t$ is in second., the acceleration due to gravity is given by ......... $m/{\sec ^2}$

The coordinates of a moving particle at any time $t$ are given by $x = a\, t^2$ and $y = b\, t^2$. The speed of the particle is

  • [AIIMS 2012]

A ball is dropped from a height and falls due to gravity and wind simultaneously imparts it a uniform horizontal acceleration. Which one of the following figures best represents its path?

If position vector of a particle is $\left[ {(3t)\widehat i\, + \,(4{t^2})\widehat j} \right]$ , then obtain its velocity vector for $2\,s$.

A particle moves along a parabolic path $y=9 x^2$ in such a way that the $x$ component of velocity remains constant and has a value $\frac{1}{3}\,m / s$. The acceleration of the particle is $.......m / s ^2$