A point moves in $x -y$ plane according to the law $x = 3\, cos\,4t$ and $y = 3\, (1 -sin\,4t)$. The distance travelled by the particle in $2\, sec$ is...........$m$ (where $x$ and $y$ are in $metres$ )
$48$
$24$
$48\,\sqrt 2 $
$24\,\sqrt 2$
The height $y$ and the distance $x$ along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) are given by $y = (8t - 5{t^2})$ meter and $x = 6t\, meter$, where $t$ is in second., the acceleration due to gravity is given by ......... $m/{\sec ^2}$
If position vector of a particle is $\left[ {(3t)\widehat i\, + \,(4{t^2})\widehat j} \right]$ , then obtain its velocity vector for $2\,s$.
A particle moves along a parabolic path $y=9 x^2$ in such a way that the $x$ component of velocity remains constant and has a value $\frac{1}{3}\,m / s$. The acceleration of the particle is $.......m / s ^2$