A physical quantity of the dimensions of length that can be formed out of $c, G$ and $\frac{e^2}{4\pi \varepsilon _0}$ is $[c$ is velocity of light, $G$ is the universal constant of gravitation and $e$ is charge $] $
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{{e^2}}}{{G4\pi \varepsilon_0}}} $
$\frac{1}{{{c^{}}}}\frac{{G{e^2}}}{{4\pi \varepsilon_0}}$
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
${c^2}\;\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
The potential energy of a point particle is given by the expression $V(x)=-\alpha x+\beta \sin (x / \gamma)$. A dimensionless combination of the constants $\alpha, \beta$ and $\gamma$ is
If $R$ and $L$ represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency
A dimensionally consistent relation for the volume $V$ of a liquid of coefficient of viscosity $\eta $ flowing per second through a tube of radius $r$ and length $l$ and having a pressure difference $p$ across its end, is