A person draws water from a $5\,m$ deep well in a bucket of mass $2\,kg$ of capacity $8\,litre$ by a rope of mass $1\,kg.$ What is the total work done by the person ? .............. $\mathrm{J}$ (Assume $g = 10\,m/sec^2$ )

  • A

    $550$

  • B

    $525$

  • C

    $125$

  • D

    $500$

Similar Questions

A wedge of mass $M = 4\,m$ lies on a frictionless plane. A particle of mass $m$ approaches the wedge with speed $v$. There is no friction between the particle and the plane or between the particle and the wedge. The maximum height climbed by the particle on the wedge is given by

  • [JEE MAIN 2019]

A cricket ball of mass $0.15\, kg$ is thrown vertically up by a bowling machine so that it rises to a maximum height of $20 \;m$ after leaving the machine. If the part pushing the ball applies a constant force $F$ on the ball and moves horizontally a distance of $0.2\, m$ while launching the ball, the value of $F($ in $N)$ is 

$\left(g=10\, m s^{-2}\right)$

  • [JEE MAIN 2020]

A graph of potential energy $V(x)$ verses $x$ is shown in figure. A particle of energy $E_0$ is executing motion in it. Draw graph of velocity and kinetic energy verses $x$ for one complete cycle $AFA$.

A bullet of mass $10 \;g$ leaves a rifle at an initial velocity of $1000 \;m/s$ and strikes the earth at the same level with a velocity of $500\; m / s$. The work done ($Joule$) in joule overcoming the resistance of air will be

  • [AIPMT 1989]

On complete combustion a litre of petrol gives off heat equivalent to $3\times 10^7\,J$. In a test drive, a car weighing $1200\,kg$ including the mass of driver, runs $15\,km$ per litre while moving with a uniform speed on a straight track. Assuming that friction offered by the road surface and air to be uniform, calculate the force of friction acting on the car during the test drive, if the efficiency of the car engine were  $0.5$.