A particle of specific charge $(q/m)$ is projected from the origin of coordinates with initial velocity $[ui - vj]$. Uniform electric magnetic fields exist in the region along the $+y$ direction, of magnitude $E$ and $B.$ The particle will definitely return to the origin once if
$[vB /2\pi E]$ is an integer
$(u^2 + v^2)^{1/2} [B / \pi E]$ is an integer
$[vB / \pi E]$ in an integer
$[uB/ \pi E]$ is an integer
Proton, deuteron and alpha particle of same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively $r_p, r_d$ and $r_{\alpha}$ Which one of the following relation is correct?
What is the radius of the path of an electron (mass $9 \times 10^{-31}\;kg$ and charge $1.6 \times 10^{-19} \;C )$ moving at a speed of $3 \times 10^{7} \;m / s$ in a magnetic field of $6 \times 10^{-4}\;T$ perpendicular to it? What is its frequency? Calculate its energy in $keV$. ( $\left.1 eV =1.6 \times 10^{-19} \;J \right)$
A charge particle moving in magnetic field $B$, has the components of velocity along $B$ as well as perpendicular to $B$. The path of the charge particle will be
An electron is projected with uniform velocity along the axis inside a current carrying long solenoid. Then :
The acceleration of an electron at a moment in a magentic field $\vec B\, = \,2\hat i + 3\hat j + 4\hat k$ is $\vec a\, = \,x\hat i - 2\hat j + \hat k$. The value of $x$ is