A particle moves with constant acceleration, let $v_1, v_2, v_3$ be the Average velocities in successive time interval $t_1, t_2$ and $t_3$ then
$\frac{{{v_1}\, - \,{v_2}}}{{{v_2}\, - \,{v_3}}}\, = \,\frac{{{t_1}\, - {t_2}}}{{{t_1}\, + \,{t_2}}}$
$\frac{{{v_1}\, - \,{v_2}}}{{{v_2}\, - \,{v_3}}}\, = \,\frac{{{t_1}\, - {t_2}}}{{{t_1}\, - \,{t_3}}}$
$\frac{{{v_1}\, - \,{v_2}}}{{{v_2}\, - \,{v_3}}}\, = \,\frac{{{t_1}\, + {t_2}}}{{{t_2}\, + \,{t_3}}}$
$\frac{{{v_1}\, - \,{v_2}}}{{{v_2}\, - \,{v_3}}}\, = \,\frac{{{t_1}\, - {t_2}}}{{{t_2}\, - \,{t_3}}}$
If a freely falling body travels in the last second a distance equal to the distance travelled by it in the first three second, the time of the travel is........$sec$
The displacement-time graph for two particles $A$ and $B$ are straight lines inclined at angles of $30^o$ and $60^o$ with the time axis. The ratio of velocities of $V_A : V_B$ is
The displacement of a particle as a function of time is shown in Figure. It indicates :-
Which of the following option is correct for a object having a straight line motion represented by the following graph ?
A bus is moving with a velocity $10 \,m/s$ on a straight road. A scooterist wishes to overtake the bus in $100\, s$. If the bus is at a distance of $1 \,km$ from the scooterist, with what velocity should the scooterist chase the bus......... $m/s$