समय $t =0$ पर एक कण बिन्दु $(2.0 \hat{ i }+4.0 \hat{ j }) \,m$ से, आरम्भिक वेग $(5.0 \hat{ i }+4.0 \hat{ j }) \,ms ^{-1}$ से, गतिशील है। यह एक स्थिर त्वरण $(4.0 \hat{ i }+4.0 \hat{ j }) \,ms ^{-2}$ उत्पन्न करने वाले एक स्थिर बल के प्रभाव में चलता है। समय $2 \,s$ पर कण की मूल बिन्दु से दूरी क्या होगी ?
$15\,m$
$20\sqrt 2 \,m$
$5\,m$
$10\sqrt 2 \,m$
किसी क्षण $‘t’$ पर एक गतिमान कण के निर्देशांक $ x = \alpha t^3$ तथा $y = \beta t^3$ द्वारा दिये जाते हैं। समय $‘t’$ पर कण का वेग है
एक प्रक्षेपण (projectile) को समतल धरातल से गति $v$ तथा प्रक्षेप कोण $\theta$ से प्रक्षेपित किया गया है। जब गुरूत्वाकर्षण के कारण त्वरण $g$ है तो प्रक्षेपण की परास $d$ है। यदि अपने प्रक्षेप पथ की अधिकतम ऊँचाई पर, प्रक्षेपण एक अन्य क्षेत्र में प्रवेश करता है जिसका प्रभावी त्वरण (effective acceleration) $g^{\prime}=\frac{g}{0.81}$ है तब नयी परास $d^{\prime}$ $=n d$ है। $n$ का मान है।. . . . . .
यदि प्रक्षेप्य का क्षैतिज दिशा में प्रारम्भिक वेग इकाई सदिश $\hat{ i }$ है एवं प्रक्षेप्य पथ की समीकरण $y =5 x (1- x )$ है। प्रारम्भिक वेग का $y$ घटक $.........\hat{ j }$ होगा। (माना $g =10 m / s ^2$ )
एक कण $A$ को किसी ऊँचाई से गिराया जाता है एवं उसी ऊँचाई से अन्य कण $B$ को $5$ मीटर/सैकण्ड के वेग से क्षैतिज दिशा में फेंका जाता है। तब सत्य कथन है