A particle moves along a straight line in such a way that it’s acceleration is increasing at the rate of $2 m/s^3$. It’s initial acceleration and velocity were $0,$ the distance covered by it in $t = 3$ second is ........ $m$
$27 $
$9 $
$3 $
$1 $
When the average and instantaneous accelerations are equal ?
A projectile is fired from horizontal ground with speed $v$ and projection angle $\theta$. When the acceleration due to gravity is $g$, the range of the projectile is $d$. If at the highest point in its trajectory, the projectile enters a different region where the effective acceleration due to gravity is $g^{\prime}=\frac{g}{0.81}$, then the new range is $d^{\prime}=n d$. The value of $n$ is. . . . .
At a height $0.4\, m$ from the ground, the velocity of a projectile in vector form is $\vec v = \left( {6\hat i + 2\hat j} \right)\,m/{s}$. The angle of projection is ...... $^o$ $(g = 10\, m/s^2)$
A particle is moving eastwards with a speed of $6 \,m / s$. After $6 \,s$, the particle is found to be moving with same speed in a direction $60^{\circ}$ north of east. The magnitude of average acceleration in this interval of time is ....... $m / s ^2$