A parallel plate capacitor with plate area $'A'$ and distance of separation $'d'$ is filled with a dielectric. What is the capacity of the capacitor when permittivity of the dielectric varies as :

$\varepsilon(x)=\varepsilon_{0}+k x, \text { for }\left(0\,<\,x \leq \frac{d}{2}\right)$

$\varepsilon(x)=\varepsilon_{0}+k(d-x)$, for $\left(\frac{d}{2} \leq x \leq d\right)$

  • [JEE MAIN 2021]
  • A

    $0$

  • B

    $\frac{{kA}}{2 \ln \left(\frac{2 \varepsilon_{0}+{kd}}{2 \varepsilon_{0}}\right)}$

  • C

    $\left(\varepsilon_{0}+\frac{{kd}}{2}\right)^{2 / / {kA}}$

  • D

    $\frac{{kA}}{2} \ln \left(\frac{2 \varepsilon_{0}}{2 \varepsilon_{0}-{kd}}\right)$

Similar Questions

A capacitor has some dielectric between its plates and the capacitor is connected to a $\mathrm{D.C.}$ source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase, decrease or remain constant.

The area of the plates of a parallel plate condenser is $A$ and the distance between the plates is $10\,mm$. There are two dielectric sheets in it, one of dielectric constant $10$ and thickness $6\,mm$ and the other of dielectric constant $5$ and thickness $4\,mm$. The capacity of the condenser is

A parallel palate capacitor with square plates is filled with four dielectrics of dielectric constants $K_1, K_2, K_3, K_4$ arranged as shown in the figure. The effective dielectric constant $K$ will be

  • [JEE MAIN 2019]

A parallel plate capacitor Air filled with a dielectric whose dielectric constant varies with applied voltage as $K = V$. An identical capacitor $B$ of capacitance $C_0$ with air as dielectric is connected to voltage source $V_0 = 30\,V$ and then connected to the first capacitor after disconnecting the voltage source. The charge and voltage on capacitor.

The capacity of a parallel plate condenser is $10\,\mu F$ without dielectric. Dielectric of constant $2$ is used to fill half the distance between the plates, the new capacitance in $\mu F$ is