A liquid drop having $6$ excess electrons is kept stationary under a uniform electric field of $25.5\, k\,Vm^{-1}$ . The density of liquid is $1.26\times10^3\, kg\, m^{-3}$ . The radius of the drop is (neglect buoyancy)
$4.3\times10^{-7}\, m$
$7.8\times10^{-7}\, m$
$0.0078\times10^{-7}\, m$
$3.4\times10^{-7}\, m$
Four charges $q, 2q, -4q$ and $2q$ are placed in order at the four corners of a square of side $b$. The net field at the centre of the square is
If the net electric field at point $\mathrm{P}$ along $\mathrm{Y}$ axis is zero, then the ratio of $\left|\frac{q_2}{q_3}\right|$ is $\frac{8}{5 \sqrt{x}}$, where $\mathrm{x}=$. . . . . .
The electric field in a region is radially outward and at a point is given by $E=250 \,r V / m$ (where $r$ is the distance of the point from origin). Calculate the charge contained in a sphere of radius $20 \,cm$ centred at the origin ......... $C$
A hollow sphere of charge does not produce an electric field at any
Two identical non-conducting solid spheres of same mass and charge are suspended in air from a common point by two non-conducting, massless strings of same length. At equilibrium, the angle between the strings is $\alpha$. The spheres are now immersed in a dielectric liquid of density $800 kg m ^{-3}$ and dielectric constant $21$ . If the angle between the strings remains the same after the immersion, then
$(A)$ electric force between the spheres remains unchanged
$(B)$ electric force between the spheres reduces
$(C)$ mass density of the spheres is $840 kg m ^{-3}$
$(D)$ the tension in the strings holding the spheres remains unchanged