A force of $200\, N$ is applied at one end of a wire of length $2\, m$ and having area of cross-section ${10^{ - 2}}\,c{m^2}$. The other end of the wire is rigidly fixed. If coefficient of linear expansion of the wire $\alpha = 8 \times 10{^{-6}}°C^{-1}$ and Young's modulus $Y = 2.2 \times {10^{11}}\,N/{m^2}$ and its temperature is increased by $5°C$, then the increase in the tension of the wire will be ........ $N$
$4.2 $
$4.4 $
$2.4$
$8.8$
The length of wire, when $M_1$ is hung from it, is $I_1$ and is $I_2$ with both $M_1$ and $M_2$ hanging. The natural length of wire is ........
A rigid bar of mass $15\; kg$ is supported symmetrically by three wires each $2.0\; m$ long. Those at each end are of copper and the middle one is of iron. Determine the ratios of their diameters if each is to have the same tension.
A $14.5\; kg$ mass, fastened to the end of a steel wire of unstretched length $1.0 \;m ,$ is whirled in a vertical circle with an angular velocity of $2\;rev/s$ at the bottom of the circle. The cross-sectional area of the wire is $0.065 \;cm ^{2} .$ Calculate the elongation of the wire when the mass is at the lowest point of its path.
A uniform heavy rod of weight $10\, {kg} {ms}^{-2}$, crosssectional area $100\, {cm}^{2}$ and length $20\, {cm}$ is hanging from a fixed support. Young modulus of the material of the rod is $2 \times 10^{11} \,{Nm}^{-2}$. Neglecting the lateral contraction, find the elongation of rod due to its own weight. (In $\times 10^{-10} {m}$)
The mean distance between the atoms of iron is $3 \times {10^{ - 10}}m$ and interatomic force constant for iron is $7\,N\,/m$The Young’s modulus of elasticity for iron is