A certain amount of $H_2CO_3$ & $HCl$ are dissolved to form $1$ litre solution. At equilibrium it is found that concentration of $H_2CO_3$ & $CO_3^{-\,-}$ are $0.1\,M$ & $0.01\,M$ respectively. Calculate the $pH$ of solution. Given that for $H_2CO_3$ $K_{a_1} =10^{-5}$ & $K_{a_2} =10^{-8}$
$2$
$4$
$1$
$6$
The hydrogen ion concentration of a $0.006\,M$ benzoic acid solution is $({K_a} = 6 \times {10^{ - 5}})$
Equal volumes of three acid solutions of $pH \,3, 4$ and $5$ are mixed in a vessel. .........$ \times 10^{-4} \,M$ will be the $H^+$ ion concentration in the mixture ?
The $pH$ of the solution obtained on neutralisation of $40\, mL\, 0.1\, M\, NaOH$ with $40\, mL\, 0.1\, M\, CH_3COOH$ is
A weak base $MOH$ of $0.1\,N$ concentration shows a $pH$ value of $9$ . What is the percentage degree of ionization of the base ? .......$\%$
A solution of weak acid $HA$ containing $0.01$ moles of acid per litre of solutions has $pH = 4$. The percentage degree of ionisation of the acid and the ionisation constant of acid are respectively.