A car sounding its horn at $480\,Hz$ moves towards a high wall at a speed of $20\,m/s$. If the speed of sound is $340\,m/s,$ the frequency of the reflected sound heard by the passenger sitting in the car will be the nearest to ..... $Hz$

  • A

    $480$

  • B

    $510$

  • C

    $540$

  • D

    $570$

Similar Questions

A string fixed at one end is vibrating in its second overtone. The length of the string is $10\  cm$ and maximum amplitude of vibration of particles of the string is $2\ mm$ . Then the amplitude of the particle at $9\ cm$ from the open end is

If $n_1 , n_2$ and $n_3$ are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency $n$ of the string is given by

A closed organ pipe has length $L$ , the air in it is vibrating in third overtone with maximum amplitude $'a'$ . The amplitude at distance $\frac {L}{7}$ from closed end of the pipe is

When two sound sources of the same amplitude but of slightly different frequencies $v_1$ and $v_2$ are sounded simultaneously, the sound one hears has a frequency equal to

A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ...... $Hz$