A car is moving with uniform velocity on a rough horizontal road. Therefore, according to Newton's first law of motion
No force is being applied by its engine
A force is surely being applied by its engine
An acceleration is being produced in the car
The kinetic energy of the car is increasing
The coefficient of static friction, $\mu _s$ between block $A$ of mass $2\,kg$ and the table as shown in the figure is $0.2$. What would be the maximum mass value of block $B$ so that the two blocks $B$ so that the two blocks do not move? The string and the pulley are assumed to be smooth and masseless ....... $kg$ $(g = 10\,m/s^2)$
A block of mass $m$ is moving with a constant acceleration a on a rough plane. If the coefficient of friction between the block and ground is $\mu $, the power delivered by the external agent after a time $t$ from the beginning is equal to
If the normal force is doubled, the coefficient of friction is
For the given figure, if block remains in equilibrium position then find frictional force between block and wall ........ $N$
Two beads connected by massless inextensible string are placed over the fixed ring as shown in figure. Mass of each bead is $m$ , and there is no friction between $B$ and ring. Find minimum value of coefficient of friction between $A$ and ring so that system remains in equilibrium. ( $C \to $center of ring, $AC$ line is vertical)