A capacitor stores $60\,\mu C$ charge when connected across a battery. When the gap between the plates is filled with dielectric, a charge of $120\,\mu C$ flows through the battery. The dielectric constant of the dielectric inserted is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Consider a parallel plate capacitor of $10\,\mu \,F$ (micro-farad) with air filled in the gap between the plates. Now one half of the space between the plates is filled with a dielectric of dielectric constant $4$, as shown in the figure. The capacity of the capacitor changes to.......$\mu \,F$

If the distance between parallel plates of a capacitor is halved and dielectric constant is doubled then the capacitance will become

If the distance between the plates of parallel plate capacitor is halved and the dielectric constant of dielectric is doubled, then its capacity will

In a parallel plate capacitor the separation between the plates is $3\,mm$ with air between them. Now a $1\,mm$ thick layer of a material of dielectric constant $2$ is introduced between the plates due to which the capacity increases. In order to bring its capacity to the original value the separation between the plates must be made......$mm$

A capacitor of capacitance $15 \,nF$ having dielectric slab of $\varepsilon_{r}=2.5$ dielectric strength $30 \,MV / m$ and potential difference $=30\; volt$ then the area of plate is ....... $ \times 10^{-4}\; m ^{2}$

  • [AIIMS 2019]