A capacitor is kept connected to the battery and a dielectric slab is inserted between the plates. During this process
No work is done
Work is done at the cost of the energy already stored in the capacitor before the slab is inserted
Work is done at the cost of the battery
Work is done at the cost of both the capacitor and the battery
Match the pairs
Capacitor | Capacitance |
$(A)$ Cylindrical capacitor | $(i)$ ${4\pi { \in _0}R}$ |
$(B)$ Spherical capacitor | $(ii)$ $\frac{{KA{ \in _0}}}{d}$ |
$(C)$ Parallel plate capacitor having dielectric between its plates | $(iii)$ $\frac{{2\pi{ \in _0}\ell }}{{ln\left( {{r_2}/{r_1}} \right)}}$ |
$(D)$ Isolated spherical conductor | $(iv)$ $\frac{{4\pi { \in _0}{r_1}{r_2}}}{{{r_2} - {r_1}}}$ |
The distance between the plates of a parallel plate condenser is $8\,mm$ and $P.D.$ $120\;volts$. If a $6\,mm$ thick slab of dielectric constant $6$ is introduced between its plates, then
Two dielectric slabs of constant ${K_1}$ and ${K_2}$ have been filled in between the plates of a capacitor as shown below. What will be the capacitance of the capacitor
The capacity of a parallel plate condenser is $10\,\mu F$ without dielectric. Dielectric of constant $2$ is used to fill half the distance between the plates, the new capacitance in $\mu F$ is
An air capacitor of capacity $C = 10\,\mu F$ is connected to a constant voltage battery of $12\,V$. Now the space between the plates is filled with a liquid of dielectric constant $5$. The charge that flows now from battery to the capacitor is......$\mu C$