A particle starts from origin at $t=0$ with a velocity $5.0 \hat{ i }\; m / s$ and moves in $x-y$ plane under action of a force which produces a constant acceleration of $(3.0 \hat{ i }+2.0 \hat{ j })\; m / s ^{2} .$
$(a)$ What is the $y$ -coordinate of the particle at the instant its $x$ -coordinate is $84 \;m$ ?
$(b)$ What is the speed of the particle at this time?
A particle moves such that its position vector $\overrightarrow{\mathrm{r}}(\mathrm{t})=\cos \omega \mathrm{t} \hat{\mathrm{i}}+\sin \omega \mathrm{t} \hat{\mathrm{j}}$ where $\omega$ is a constant and $t$ is time. Then which of the following statements is true for the velocity $\overrightarrow{\mathrm{v}}(\mathrm{t})$ and acceleration $\overrightarrow{\mathrm{a}}(\mathrm{t})$ of the particle
The position vector of an object at any time $t$ is given by $3 t^2 \hat{i}+6 t \hat{j}+\hat{k}$. Its velocity along $y$-axis has the magnitude
A man on a rectilinearly moving cart, facing the direction of motion, throws a ball straight up with respect to himself