A body at rest is moved along a horizontal straight line by a machine delivering a constant power. The distance moved by the body in time $t^{\prime}$ is proportional to :
$t^{\frac{1}{4}}$
$t^{\frac{3}{4}}$
$t^{\frac{3}{2}}$
$t^{\frac{1}{2}}$
A simple pendulum of mass $200\, gm$ and length $100\, cm$ is moved aside till the string makes an angle of $60^o$ with the vertical. The kinetic and potential energies of the bob, when the string is inclined at $30^o$ to the vertical, are
The potential energy of a diatomic molecule is given by $U = \frac{A}{{{r^{12}}}} - \frac{B}{{{r^6}}}$ . $A$ and $B$ are positive constants. The distance $r$ between them at equilibrium is
System shown in figure is released from rest. Pulley and spring are massless and the friction is absent everywhere. The speed of $5\, kg$ block, when $2\, kg$ block leaves the contact with ground is : (take force constant of the spring $K = 40\, N/m$ and $g = 10\, m/s^2$)
A body of mass $1\, kg$ is thrown upwards with a velocity $20\, m/s$. It momentarily comes to rest after attaining a height of $18\, m$. How much energy is lost due to air friction ............. $\mathrm{J}$ $(g = 10\, m/s^2)$
A body of mass $m= 10^{-2} \;kg$ is moving in a medium and experiences a frictional force $F= -kv^2$ Its intial speed is $v_0= 10$ $ms^{-1}$ If, after $10\ s$, its energy is $\frac{1}{8}$ $mv_0^2$ the value of $k$ will be