A ball is dropped from a height of $20\, cm$. Ball rebounds to a height of $10\, cm$. What is the loss of energy ? ................ $\%$
$25$
$75$
$50$
$100$
A body of mass $10\, kg$ is released from a tower of height $20\,m$ and body acquires a velocity of $10\,ms^{-1}$ after falling through the distance $20\,m$ . The work done by the push of the air on the body is:- ................. $\mathrm{J}$ (Take $g = 10\, m/s^2$ )
A block of mass $m$ moving with speed $v$ compresses a spring through distance $x$ before its speed is halved. What is the value of spring constant ?
A graph of potential energy $V(x)$ verses $x$ is shown in figure. A particle of energy $E_0$ is executing motion in it. Draw graph of velocity and kinetic energy verses $x$ for one complete cycle $AFA$.
A ball is released from a height of $10\, m$. If after the impact there is loss of $40\%$ in its energy, the ball shall rise upto- ................. $\mathrm{m}$
Consider an elliptically shaped rail $P Q$ in the vertical plane with $O P=3 \ m$ and $OQ =4 \ m$. A block of mass $1 \ kg$ is pulled along the rail from $P$ to $Q$ with a force of $18 \ N$, Which is always parallel to line $PQ$ (see the figure given). Assuming no frictional losses, the kinetic energy of the block when it reaches $Q$ is $(n \times 10)$ joules. The value of $n$ is (take acceleration due to gravity $=10 \ ms ^{-2}$ )