A $40$ $\mu F$ capacitor in a defibrillator is charged to $3000\,V$. The energy stored in the capacitor is sent through the patient during a pulse of duration $2\,ms$. The power delivered to the patient is......$kW$
$45$
$90$
$180$
$360$
If the charge on a capacitor is increased by $2C$, the energy stored in it increases by $44 \%$. The original charge on the capacitor is (in $C$ )
The separation between the plates of a isolated charged parallel plate capacitor is increased. Which of the following quantities will change?
In a uniform electric field, a cube of side $1\ cm$ is placed. The total energy stored in the cube is $8.85\ \mu J.$ The electric field is parallel to four of the faces of the cube. The electric flux through any one of the remaining two faces is.
Two identical capacitors, have the same capacitance $C$. One of them is charged to potential ${V_1}$ and the other to ${V_2}$. The negative ends of the capacitors are connected together. When the positive ends are also connected, the decrease in energy of the combined system is
A capacitor of $2\,\, \mu F$ is charged as shown in the diagram. When the switch $S$ is turned to position $2,$ the percentage of its stored energy dissipated is ......$\%$