$x = 7$ touches the circle ${x^2} + {y^2} - 4x - 6y - 12 = 0$, then the coordinates of the point of contact are
$(7, 3)$
$(7, 4)$
$(7, 8)$
$(7, 2)$
Equation of the pair of tangents drawn from the origin to the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ is
Suppose two perpendicular tangents can be drawn from the origin to the circle $x^2+y^2-6 x-2 p y+17=0$, for some real $p$. Then, $|p|$ is equal to
A circle passes through the points $(- 1, 1) , (0, 6)$ and $(5, 5)$ . The point$(s)$ on this circle, the tangent$(s)$ at which is/are parallel to the straight line joining the origin to its centre is/are :
The line $x\cos \alpha + y\sin \alpha = p$will be a tangent to the circle ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$, if $p = $
Points $P (-3,2), Q (9,10)$ and $R (\alpha, 4)$ lie on a circle $C$ with $P R$ as its diameter. The tangents to $C$ at the points $Q$ and $R$ intersect at the point $S$. If $S$ lies on the line $2 x - ky =1$, then $k$ is equal to $.........$.