$1 \,kg$ of ice at $-20^{\circ} C$ is mixed with $2 \,kg$ of water at $90^{\circ} C$. Assuming that there is no loss of energy to the environment, the final temperature of the mixture is ............ $^{\circ} C$ (Assume, latent heat of ice $=334.4 \,kJ / kg$, specific heat of water and ice are $4.18 \,kJ kg ^{-1} K ^{-1}$ and $2.09 \,kJ kg ^{-1}- K ^{-1}$, respectively.)
$30$
$0$
$80$
$45$
$200 \,g$ of ice at $-20^{\circ} C$ is mixed with $500 \,g$ of water at $20^{\circ} C$ in an insulating vessel. Final mass of water in vessel is ........... $g$ (specific heat of ice $=0.5 \,cal g ^{-10} C ^{-1}$ )
A liquid of mass $M$ and specific heat $S$ is at a temperature $2t$. If another liquid of thermal capacity $1.5$ times, at a temperature of $\frac{t}{3}$ is added to it, the resultant temperature will be
When $100\,g$ of a liquid $A$ at $100\,^oC$ is added to $50\,g$ of a liquid $B$ at temperature $75\,^oC$, the temperature of the mixture becomes $90\,^oC$. The temperature of the mixture, if $100\,g$ of liquid $A$ at $100\,^oC$ is added to $50\,g$ of liquid $B$ at $50\,^oC$, will be ........$^oC$
Heat given to a body which raises its temperature by $1\ ^oC$ is
An aluminium piece of mass $50 \,g$ initially at $300^{\circ} C$ is dipped quickly and taken out of $1 \,kg$ of water, initially at $30^{\circ} C$. If the temperature of the aluminium piece immediately after being taken out of the water is found to be $160^{\circ} C$, the temperature of the water ............ $^{\circ} C$ Then, specific heat capacities of aluminium and water are $900 \,Jkg ^{-1} K ^{-1}$ and $4200 \,Jkg ^{-1} K ^{-1}$, respectively.