${d \over {dx}}({x^2}{e^x}\sin x) = $

  • A
    $x\,{e^x}(2\sin x + x\sin x + x\cos x)$
  • B
    $x\,{e^x}(2\sin x + x\sin x - \cos x)$
  • C
    $x\,{e^x}(2\sin x + x\sin x + \cos x)$
  • D
    None of these

Similar Questions

A cuboidal block has dimension $(1.5 × 1.5 × 1.0)\  \ cm$ what is the surface area of cuboid (in $cm^2$)

The greatest value of the function $-5 \sin \theta+12 \cos \theta$ is

The area $'A'$ of a blot of ink is growing such that after $t$ second its area is given by $A = (3t^2 + 7)\,cm^2$. Calculate the rate of increase of area at $t = 2\, sec$. .......... $cm^2/s$

If $y = x\sin x,$then

If $y = 1 + x + {{{x^2}} \over {2\,!}} + {{{x^3}} \over {3\,!}} + ..... + {{{x^n}} \over {n\,!}}$, then ${{dy} \over {dx}} = $