$(a)$ Show that the normal component of electrostatic field has a discontinuity from one side of a charged surface to another given by

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$

where $\hat{ n }$ is a unit vector normal to the surface at a point and $\sigma$ is the surface charge density at that point. (The direction of $\hat { n }$ is from side $1$ to side $2 .$ ) Hence, show that just outside a conductor, the electric field is $\sigma \hat{ n } / \varepsilon_{0}$

$(b)$ Show that the tangential component of electrostatic field is continuous from one side of a charged surface to another.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Electric field on one side of a charged body is $E_{1}$ and electric field on the other side of the same body. is $E_z$. If infinite plane charged body has a uniform thickness, then electric field due to one surface of the charged body is given by,

$\overline{E_{1}}=-\frac{\sigma}{2 \epsilon_{0}} \hat{n}$

Where,

$\hat{n}=$ Unit vector normal to the surface at a point

$\sigma=$ Surface charge density at that point Electric field due to the other surface of the charged body,

$\overrightarrow{E_{2}}=-\frac{\sigma}{2 \epsilon_{0}} \hat{n}$

Electric field at any point due to the two surfaces,

$\overrightarrow{E_{2}}-\overrightarrow{E_{1}}=\frac{\sigma}{2 \epsilon_{0}} \hat{n}+\frac{\sigma}{2 \epsilon_{0}} \hat{n}=\frac{\sigma}{\epsilon_{0}} \hat{n}$

$(\overrightarrow{E_{2}}-\overrightarrow{E_{1}}) \cdot \hat{n}=\frac{\sigma}{\epsilon_{0}}$

since inside a closed conductor, $\overline{E_{1}}=0$

$\therefore d \vec{E}=\overrightarrow{E_{2}}=-\frac{\sigma}{2 \epsilon_{0}} \hat{n}$

Therefore, the electric field just outside the conductor is $\frac{\sigma}{\epsilon_{0}} \hat n$

$(b)$ When a charged particle is moved from one point to the other on a closed loop, the work done by the electrostatic field is zero. Hence, the tangential component of electrostatic field is continuous from one side of a charged surface to the other.

Similar Questions

An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho $. It has a spherical cavity of radius $R/2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2R$ from the axis of the cylinder, is given by the expression $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ .The value of $K$ is

There is a solid sphere of radius $‘R’$ having uniformly distributed charge throughout it. What is the relation between electric field $‘E’$ and distance $‘r’$ from the centre ( $r$ is less than R ) ?

Two parallel infinite line charges with linear charge densities $+\lambda\; \mathrm{C} / \mathrm{m}$ and $-\lambda\; \mathrm{C} / \mathrm{m}$ are placed at a distance of $2 \mathrm{R}$ in free space. What is the electric field mid-way between the two line charges?

  • [NEET 2019]

Obtain the expression of electric field at any point by continuous distribution of charge on a  $(i)$ line $(ii)$ surface $(iii)$ volume.

Two infinitely long parallel wires having linear charge densities ${\lambda _1}$ and ${\lambda _2}$ respectively are placed at a distance of $R$ metres. The force per unit length on either wire will be $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$