$50\, g$ ice at $0\,^oC$ is dropped into a calorimeter containing $100\, g$ water at $30\,^oC$. If thermal capacity of calorimeter is zero then amount of ice left in the mixture at equilibrium is ........ $gm$
$12.5$
$25$
$20$
$10$
$1\,\, kg$ of ice at $-10^o C$ is mixed with $4.4\,\, kg$ of water at $30^o C$. The final temperature of mixture is ........$^oC$ (specific heat of ice is $2100\,\,J/kg/k$)
An unknown metal of mass $192\, g$ heated to a temperature of $100\,^oC$ was immersed into a brass calorimeter of mass $128\, g$ containing $240\, g$ of water at a temperature of $8.4\,^oC$. Calculate the specific heat of the unknown metal if water temperature stabilizes at $21.5\,^oC$. (Specific heat of brass is $394\, J\, kg^{-1}\, K^{-1}$) ......... $J\, kg^{-1}\, K^{-1}$
A continuous flow water heater (geyser) has an electrical power rating $= 2 \,\,kW$ and efficienty of conversion of electrical power into heat $ = 80 \%$. If water is flowing through the device at the rate of $100 \,\,cc/sec$, and the inlet temperature is $10^o C$, the outlet temperature will be ....... $^oC$
One kilogram of ice at $0°C$ is mixed with one kilogram of water at $80°C.$ The final temperature of the mixture is........ $^oC$
$($Take : specific heat of water$ = 4200\,J\,k{g^{ - 1}}\,{K^{ - 1}}$, latent heat of ice $ = 336\,kJ\,k{g^{ - 1}})$
A calorimeter contains $0.2\, kg$ of water at $30\,^oC$, $0.1\,kg$ of water at $60\,^oC$ is added to it, the mixture is well stirred and the resulting temperature is found to be $35\,^oC$. The thermal capacity of calorimeter is .......... $J/K$