. Three identical capacitors $C _1, C _2$ and $C _3$ have a capacitance of $1.0 \mu F$ each and they are uncharged initially. They are connected in a circuit as shown in the figure and $C _1$ is then filled completely with a dielectric material of relative permittivity $\varepsilon_{ r }$. The cell electromotive force (emf) $V_0=8 V$. First the switch $S_1$ is closed while the switch $S_2$ is kept open. When the capacitor $C_3$ is fully charged, $S_1$ is opened and $S_2$ is closed simultaneously. When all the capacitors reach equilibrium, the charge on $C _3$ is found to be $5 \mu C$. The value of $\varepsilon_{ r }=$. . . . . 

223508-q

  • [IIT 2018]
  • A

    $1.40$

  • B

    $1.30$

  • C

    $1.20$

  • D

    $1.50$

Similar Questions

A parallel plate capacitor with air between plates has a capacitance of $8\,\mu F$ what will be capacitance if distance between plates is reduced by half, and the space between them is filled with a substance of dielectric constant $6$ ?.....$\mu F$

A parallel plate capacitor having a separation between the plates $d$ , plate area $A$ and material with dielectric constant $K$ has capacitance $C_0$. Now one-third of the material is replaced by another material with dielectric constant $2K$, so that effectively there are two capacitors one with area $\frac{1}{3}\,A$ , dielectric constant $2K$ and another with area $\frac{2}{3}\,A$ and dielectric constant $K$. If the capacitance of this new capacitor is $C$ then $\frac{C}{{{C_0}}}$ is

  • [JEE MAIN 2013]

Putting a dielectric substance between two plates of condenser, capacity, potential and potential energy respectively

A capacitor of $10 \mu \mathrm{F}$ capacitance whose plates are separated by $10 \mathrm{~mm}$ through air and each plate has area $4 \mathrm{~cm}^2$ is now filled equally with two dielectric media of $\mathrm{K}_1=2, \mathrm{~K}_2=3$ respectively as shown in figure. If new force between the plates is $8 \mathrm{~N}$. The supply voltage is . . . .. . .V.

  • [JEE MAIN 2024]

Polar molecules are the molecules:

  • [NEET 2021]