“Explain average acceleration and instantaneous acceleration.”

Vedclass pdf generator app on play store
Vedclass iOS app on app store

"The time rate of change of velocity for corresponding interval of time is called average acceleration."

$\text { Average acceleration }=\frac{\text { Change in velocity }}{\text { Time interval }}$

The average acceleration $\vec{a}$ of an object for a time interval $\Delta t$ moving in $x y$-plane is the change

in velocity divided by the time interval :

$\vec{a}=\frac{\overrightarrow{\Delta v}}{\Delta t}=\frac{\Delta\left(v_{x} \hat{i}+v_{y} \hat{j}\right)}{\Delta t}=\frac{\Delta v_{x}}{\Delta t} \hat{i}+\frac{\Delta v_{y}}{\Delta t} \hat{j} \quad \vec{a}=a_{x} \hat{i}+a_{y} \hat{j}ac$

The acceleration (instantaneous acceleration) is the limiting value of the average acceleration as the time interval approaches zero.

$\left(\vec{a}=\lim _{\Delta t \rightarrow 0} \frac{\overrightarrow{\Delta v}}{\Delta t}=\frac{\overrightarrow{d v}}{d t}\right)$

Since $\overrightarrow{\Delta v}=\Delta v_{x} \hat{i}+\Delta v_{y} \hat{j}$, we have

$\vec{a}=\hat{i} \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}+\hat{j} \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{y}}{\Delta t}=\frac{d v_{x}}{d t} \hat{i}+\frac{d v_{y}}{d t} \hat{j}$

$\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}$

where, $a_{x}=\frac{d v_{x}}{d t}, a_{y}=\frac{d v_{y}}{d t}$

Equation $(1)$ represent that differentiation of velocity w.r.t. time gives acceleration.

$\vec{a}=\frac{\overrightarrow{d v}}{d t}=\frac{d}{d t}\left(\frac{\overrightarrow{d r}}{d t}\right)=\frac{d^{2} \vec{r}}{d t^{2}}=\ddot{\vec{r}}$

Equation$ (3)$ represent that double differentiation of position (displacement) w.r.t. time gives acceleration.

885-s80

Similar Questions

A particle starts from origin at $t=0$ with a velocity $5 \hat{i} \mathrm{~m} / \mathrm{s}$ and moves in $x-y$ plane under action of a force which produces a constant acceleration of $(3 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^2$. If the $x$-coordinate of the particle at that instant is $84 \mathrm{~m}$, then the speed of the particle at this time is $\sqrt{\alpha} \mathrm{m} / \mathrm{s}$. The value of $\alpha$ is___________.

  • [JEE MAIN 2024]

A particle projected from origin moves in $x-y$ plane with a velocity $\vec{v}=3 \hat{i}+6 x \hat{j}$, where $\hat{i}$ and $\hat{j}$ are the unit vectors along $x$ and $y$ axis. Find the equation of path followed by the particle

A particle moves in space along the path $z = ax^3 + by^2$ in such a way that $\frac{dx}{dt} = c = \frac{dy}{dt}.$ Where $a, b$ and $c$ are contants. The acceleration of the  particle is

Write equations of motion for uniformly acceletated motion in plane ?

Three particles, located initially on the vertices of an equilateral triangle of side $L,$ start moving with a constant tangential acceleration towards each other in a cyclic manner, forming spiral loci that coverage at the centroid of the triangle. The length of one such spiral locus will be