Write the solution set of the equation ${x^2} + x - 2 = 0$ in roster form.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation can be written as

$\left( {x - 1} \right)\left( {x - 2} \right) = 0,$ i.e., $x=1,-2 $

Therefore, the solution set of the given equation can be written in roster form as $\{ 1, - 2\} $

Similar Questions

State which of the following sets are finite or infinite :

$\{ x:x \in N$ and $(x - 1)(x - 2) = 0\} $

Which of the following are examples of the null set

Set of even prime numbers

Write the following as intervals :

$\{ x:x \in R, - 12\, < \,x\, < \, - 10\} $

Consider the sets

$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$

Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:

$B \ldots \cdot C$

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $x \in A$ and $A \not\subset B$, then $x \in B$