Write the following cubes in expanded form : $\left[x-\frac{2}{3} y\right]^{3}$
Using Identity $VI$ and Identity $VII,$ we have
$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\left(x-\frac{2}{3} y\right)^{3}=x^{3}-\left(\frac{2}{3} y\right)^{3}-3(x)\left(\frac{2}{3} y\right)\left[x-\frac{2}{3} y\right]$
$= x ^{3}-\frac{8}{27} y ^{3}-2 xy \left[x-\frac{2}{3} y \right] $ $[$ Using Identity $VII ]$
$=x^{3}-\frac{8}{27} y^{3}-\left[(2 x y) x-(2 x y) \frac{2}{3} y\right]=x^{3}-\frac{8}{27} y^{3}+\left[2 x^{2} y-\frac{4}{3} x y^{2}\right]$
$=x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2}$
Write the following cubes in the expanded form : $(3 a+4 b)^{3}$
Factorise each of the following : $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$
Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer. $y^{2}+\sqrt{2}$
Factorise the following using appropriate identities : $9 x^{2}+6 x y+y^{2}$
Write $(3a + 4b + 5c)^2$ in expanded form.