Use suitable identities to find the products :  $(3 x+4)(3 x-5)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(3 x+4)(3 x-5)$ :

Using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b,$ we have

$(3 x+4)(3 x-5) =(3 x)^{2}+[4+(-5)] 3 x+[4 \times(-5)] $

$=9 x^{2}+[-1] 3 x+[-20]=9 x^{2}-3 x-20$

Similar Questions

Factorise $x^{3}-23 x^{2}+142 x-120$

Use suitable identities to find the products : $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$

Write the following cubes in the expanded form : $(3 a+4 b)^{3}$

Find the remainder when $x^4+x^3-2x^2+x+1$ is divided by $x -1$.