To determine Young's modulus of a wire, the formula is $Y = \frac{F}{A}.\frac{L}{{\Delta L}}$ where $F/A$ is the stress and $L/\Delta L$ is the strain. The conversion factor to change $Y$ from $CGS$ to $MKS$ system is

  • A

    $1$

  • B

    $10$

  • C

    $0.1$

  • D

    $0.01$

Similar Questions

A rubber cord $10\, m$ long is suspended vertically. How much does it stretch under its own weight $($Density of rubber is $1500\, kg/m^3, Y = 5×10^8 N/m^2, g = 10 m/s^2$$)$

The length of wire becomes $l_1$ and $l_2$ when $100\,N$ and $120\,N$ tensions are applied respectively. If $10l_2=11l_1$, the natural length of wire will be $\frac{1}{x} l_1$. Here the value of $x$ is ........

  • [JEE MAIN 2023]

In a human pyramid in a circus, the entire weight of the balanced group is supported by the legs of a performer who is lying on his back. The combined mass of all the persons performing the act, and the tables, plaques etc. Involved is $280\; kg$. The mass of the performer lying on his back at the bottom of the pyramid is $60\; kg$. Each thighbone (femur) of this performer has a length of $50\; cm$ and an effective radius of $2.0\; cm$. Determine the amount by which each thighbone gets compressed under the extra load.

There are two wire of same material and same length while the diameter of second wire is two times the diameter of first wire, then the ratio of extension produced in the wires by applying same load will be

  • [AIIMS 2013]

In nature the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus, the vertical through the centre of gravity does not fall withinthe  base. The elastic torque caused because of this bending about the central axis of the tree is given by $\frac{{Y\pi {r^4}}}{{4R}}$ $Y$ is the Young’s modulus, $r$ is the radius of the trunk and $R$ is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.